COVID-19 and multisystem inflammatory syndrome in children and adolescents | #covid19 | #kids | #childern

  • 1.WHO coronavirus disease (COVID-19) dashboard.

  • 2.

    Coronavirus disease 2019 (COVID-19): epidemiology update.

  • 3.
    • European Centre for Disease Prevention and Control

    COVID-19.

  • 4.
    • Epidemiology Working Group for NCIP Epidemic Response

    The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China.

    Zhonghua Liu Xing Bing Xue Za Zhi. 2020; 41 : 145-151

  • 5.

    Pakistan cases details.

  • 6.

    Multisystem inflammatory syndrome in children and adolescents with COVID-19.

  • 7.
    • Sanna G
    • Serrau G
    • Bassareo PP
    • Neroni P
    • Fanos V
    • Marcialis MA

    Children’s heart and COVID-19: up-to-date evidence in the form of a systematic review.

    Eur J Pediatr. 2020; 179: 1079-1087

  • 8.
    • Jones VG
    • Mills M
    • Suarez D
    • et al.

    COVID-19 and Kawasaki disease: novel virus and novel case.

    Hosp Pediatr. 2020; 10: 537-540

  • 9.
    • European Centre for Disease Prevention and Control

    Rapid risk assessment: paediatric inflammatory multisystem syndrome and SARS-CoV-2 infection in children.

  • 10.
    • Riphagen S
    • Gomez X
    • Gonzalez-Martinez C
    • Wilkinson N
    • Theocharis P

    Hyperinflammatory shock in children during COVID-19 pandemic.

    Lancet. 2020; 395: 1607-1608

  • 11.
    • Balasubramanian S
    • Nagendran TM
    • Ramachandran B
    • Ramanan AV

    Hyper-inflammatory syndrome in a child with COVID-19 treated successfully with intravenous immunoglobulin and tocilizumab.

    Indian Pediatr. 2020; ()

  • 12.
    • Verdoni L
    • Mazza A
    • Gervasoni A
    • et al.

    An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study.

    Lancet. 2020; 395: 1771-1778

  • 13.
    • Toubiana J
    • Poirault C
    • Corsia A
    • et al.

    Kawasaki-like multisystem inflammatory syndrome in children during the COVID-19 pandemic in Paris, France: prospective observational study.

    BMJ. 2020; 369m2094

  • 14.
    • Rauf A
    • Vijayan A
    • John ST
    • Krishnan R
    • Latheef A

    Multisystem inflammatory syndrome with features of atypical Kawasaki disease during COVID-19 pandemic.

    Indian J Pediatr. 2020; ()

  • 15.
    • Chiotos K
    • Bassiri H
    • Behrens EM
    • et al.

    Multisystem inflammatory syndrome in children during the coronavirus 2019 pandemic: a case series.

    J Pediatric Infect Dis Soc. 2020; 9: 393-398

  • 16.
    • Greene AG
    • Saleh M
    • Roseman E
    • Sinert R

    Toxic shock-like syndrome and COVID-19: a case report of multisystem inflammatory syndrome in children (MIS-C).

    Am J Emerg Med. 2020; ()

  • 17.
    • Grimaud M
    • Starck J
    • Levy M
    • et al.

    Acute myocarditis and multisystem inflammatory emerging disease following SARS-CoV-2 infection in critically ill children.

    Ann Intensive Care. 2020; 10: 69

  • 18.
    • Whittaker E
    • Bamford A
    • Kenny J
    • et al.

    Clinical characteristics of 58 children with a pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2.

    JAMA. 2020; ()

  • 19.
    • Cheung EW
    • Zachariah P
    • Gorelik M
    • et al.

    Multisystem inflammatory syndrome related to COVID-19 in previously healthy children and adolescents in New York City.

    JAMA. 2020; ()

  • 20.
    • Belhadjer Z
    • M’ot M
    • Bajolle F
    • et al.

    Acute heart failure in multisystem inflammatory syndrome in children (MIS-C) in the context of global SARS-CoV-2 pandemic.

    Circulation. 2020; ()

  • 21.
    • Dufort EM
    • Koumans EH
    • Chow EJ
    • et al.

    Multisystem inflammatory syndrome in children in New York state.

    N Engl J Med. 2020; 383: 347-358

  • 22.
    • Feldstein LR
    • Rose EB
    • Horwitz SM
    • et al.

    Multisystem inflammatory syndrome in U.S. children and adolescents.

    N Engl J Med. 2020; 383: 334-346

  • 23.
    • Hameed S
    • Elbaaly H
    • Reid CEL
    • et al.

    Spectrum of imaging findings on chest radiographs, US, CT, and MRI images in multisystem inflammatory syndrome in children (MIS-C) associated with COVID-19.

    Radiology. 2020; ()

  • 24.
    • Kaushik S
    • Aydin SI
    • Derespina KR
    • et al.

    Multisystem inflammatory syndrome in children associated with severe acute respiratory syndrome coronavirus 2 infection: a multi-institutional study from New York City.

    J Pediatr. 2020; ()

  • 25.
    • Capone CA
    • Subramony A
    • Sweberg T
    • et al.

    Characteristics, cardiac involvement, and outcomes of multisystem inflammatory disease of childhood (MIS-C) associated with SARS-CoV-2 infection.

    J Pediatr. 2020; ()

  • 26.
    • Miller J
    • Cantor A
    • Zachariah P
    • Ahn D
    • Martinez M
    • Margolis K

    Gastrointestinal symptoms as a major presentation component of a novel multisystem inflammatory syndrome in children (MIS-C) that is related to COVID-19: a single center experience of 44 cases.

    Gastroenterology. 2020; ()

  • 27.
    • Riollano-Cruz M
    • Akkoyun E
    • Briceno-Brito E
    • et al.

    Multisystem inflammatory syndrome in children (MIS-C) related to COVID-19: a New York City experience.

    J Med Virol. 2020; ()

  • 28.
    • Blondiaux E
    • Parisot P
    • Redheuil A
    • et al.

    Cardiac MRI of children with multisystem inflammatory syndrome (MIS-C) associated with COVID-19: case series.

    Radiology. 2020; ()

  • 29.
    • Ng KF
    • Kothari T
    • Bandi S
    • et al.

    COVID-19 multisystem inflammatory syndrome in three teenagers with confirmed SARS-CoV-2 infection.

    J Med Virol. 2020; ()

  • 30.
    • Ouldali N
    • Pouletty M
    • Mariani P
    • et al.

    Emergence of Kawasaki disease related to SARS-CoV-2 infection in an epicentre of the French COVID-19 epidemic: a time-series analysis.

    Lancet Child Adolesc Health. 2020; ()

  • 31.
    • Ramcharan T
    • Nolan O
    • Lai CY
    • et al.

    Paediatric inflammatory multisystem syndrome: temporally associated with SARS-CoV-2 (PIMS-TS): cardiac features, management and short-term outcomes at a UK tertiary paediatric hospital.

    Pediatr Cardiol. 2020; ()

  • 32.
    • Schupper AJ
    • Yaeger KA
    • Morgenstern PF

    Neurological manifestations of pediatric multi-system inflammatory syndrome potentially associated with COVID-19.

    Childs Nerv Syst. 2020; 36: 1579-1580

  • 33.
    • Pouletty M
    • Borocco C
    • Ouldali N
    • et al.

    Paediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 mimicking Kawasaki disease (Kawa-COVID-19): a multicentre cohort.

    Ann Rheum Dis. 2020; 79: 999-1006

  • 34.
    • Rivera-Figueroa EI
    • Santos R
    • Simpson S
    • Garg P

    Incomplete Kawasaki disease in a child with COVID-19.

    Indian Pediatr. 2020; ()

  • 35.
    • Waltuch T
    • Gill P
    • Zinns LE
    • et al.

    Features of COVID-19 post-infectious cytokine release syndrome in children presenting to the emergency department.

    Am J Emerg Med. 2020; ()

  • 36.
    • Licciardi F
    • Pruccoli G
    • Denina M
    • et al.

    SARS-CoV-2-induced Kawasaki-like hyperinflammatory syndrome: a novel COVID phenotype in children.

    Pediatrics. 2020; ()

  • 37.
    • Centers for Disease Control and Prevention

    Multisystem inflammatory syndrome.

  • 38.
    • Australian Government Department of Health

    Australian Health Protection Principal Committee (AHPPC) coronavirus (COVID-19) statements on 14 May 2020.

  • 39.
    • The Royal College of Paediatrics and Child Health

    Guidance–paediatric multisystem inflammatory syndrome temporally associated with COVID-19 (PIMS).

  • 40.

    Childhood multisystem inflammatory syndrome—a new challenge in the pandemic.

    N Engl J Med. 2020; 383: 393-395

  • 41.
    • Kanegaye JT
    • Wilder MS
    • Molkara D
    • et al.

    Recognition of a Kawasaki disease shock syndrome.

    Pediatrics. 2009; 123: e783-e789

  • 42.
    • Newburger JW
    • Takahashi M
    • Gerber MA
    • et al.

    Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association.

    Circulation. 2004; 110: 2747-2771

  • 43.
    • Gámez-González LB
    • Murata C
    • Muñoz-Ramírez M
    • Yamazaki-Nakashimada M

    Clinical manifestations associated with Kawasaki disease shock syndrome in Mexican children.

    Eur J Pediatr. 2013; 172: 337-342

  • 44.
    • Chen P-S
    • Chi H
    • Huang F-Y
    • Peng C-C
    • Chen M-R
    • Chiu N-C

    Clinical manifestations of Kawasaki disease shock syndrome: a case-control study.

    J Microbiol Immunol Infect. 2015; 48: 43-50

  • 45.
    • Lin Y-J
    • Cheng M-C
    • Lo M-H
    • Chien S-J

    Early differentiation of Kawasaki disease shock syndrome and toxic shock syndrome in a pediatric intensive care unit.

    Pediatr Infect Dis J. 2015; 34: 1163-1167

  • 46.
    • Yim D
    • Ramsay J
    • Kothari D
    • Burgner D

    Coronary artery dilatation in toxic shock-like syndrome: the Kawasaki disease shock syndrome.

    Pediatr Cardiol. 2010; 31: 1232-1235

  • 47.
    • Gamez-Gonzalez LB
    • Moribe-Quintero I
    • Cisneros-Castolo M
    • et al.

    Kawasaki disease shock syndrome: unique and severe subtype of Kawasaki disease.

    Pediatr Int (Roma). 2018; 60: 781-790

  • 48.

    The role of superantigens of group A Streptococcus and Staphylococcus aureus in Kawasaki disease.

    Curr Opin Infect Dis. 2007; 20: 298-303

  • 49.
    • Gatterre P
    • Oualha M
    • Dupic L
    • et al.

    Kawasaki disease: an unexpected etiology of shock and multiple organ dysfunction syndrome.

    Intensive Care Med. 2012; 38: 872-878

  • 50.
    • Nagata S
    • Yamashiro Y
    • Ohtsuka Y
    • et al.

    Heat shock proteins and superantigenic properties of bacteria from the gastrointestinal tract of patients with Kawasaki disease.

    Immunology. 2009; 128: 511-520

  • 51.

    Epidemiology of COVID-19 among children in China.

    Pediatrics. 2020; 145e20200702

  • 52.
    • Liu Y
    • Yan L-M
    • Wan L
    • et al.

    Viral dynamics in mild and severe cases of COVID-19.

    Lancet Infect Dis. 2020; 20: 656-657

  • 53.
    • Yang J
    • Zheng Y
    • Gou X
    • et al.

    Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis.

    Int J Infect Dis. 2020; 94: 91-95

  • 54.
    • Götzinger F
    • Santiago-García B
    • Noguera-Julián A
    • et al.

    COVID-19 in children and adolescents in Europe: a multinational, multicentre cohort study.

    Lancet Child Adolesc Health. 2020; ()

  • 55.
    • Centers for Disease Control and Prevention

    Severe outcomes among patients with coronavirus disease 2019 (COVID-19)—United States, February 12–March 16, 2020.

    MMWR Morb Mortal Wkly Rep. 2020; 69: 343-346

  • 56.

    Clinical management of COVID-19 interim guidance.

  • 57.
    • Ellinghaus D
    • Degenhardt F
    • Bujanda L
    • et al.

    Genomewide association study of severe COVID-19 with respiratory failure.

    N Engl J Med. 2020; ()

  • 58.
    • McCrindle BW
    • Rowley AH
    • Newburger JW
    • et al.

    Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association.

    Circulation. 2017; 135: e927-e999

  • 59.
    • Esper F
    • Shapiro ED
    • Weibel C
    • Ferguson D
    • Landry ML
    • Kahn JS

    Association between a novel human coronavirus and Kawasaki disease.

    J Infect Dis. 2005; 191: 499-502

  • 60.
    • Ebihara T
    • Endo R
    • Ma X
    • Ishiguro N
    • Kikuta H

    Lack of association between New Haven coronavirus and Kawasaki disease.

    J Infect Dis. 2005; 192: 351-352

  • 61.
    • Belay ED
    • Erdman DD
    • Anderson LJ
    • et al.

    Kawasaki disease and human coronavirus.

    J Infect Dis. 2005; 192: 352-353

  • 62.
    • Shimizu C
    • Shike H
    • Baker SC
    • et al.

    Human coronavirus NL63 is not detected in the respiratory tracts of children with acute Kawasaki disease.

    J Infect Dis. 2005; 192: 1767-1771

  • 63.
    • Chang L-Y
    • Chiang B-L
    • Kao C-L
    • et al.

    Lack of association between infection with a novel human coronavirus (HCoV), HCoV-NH, and Kawasaki disease in Taiwan.

    J Infect Dis. 2006; 193: 283-286

  • 64.
    • Dominguez SR
    • Anderson MS
    • Glod’ MP
    • Robinson CC
    • Holmes KV

    Blinded case-control study of the relationship between human coronavirus NL63 and Kawasaki syndrome.

    J Infect Dis. 2006; 194: 1697-1701

  • 65.
    • Kim JH
    • Yu JJ
    • Lee J
    • et al.

    Detection rate and clinical impact of respiratory viruses in children with Kawasaki disease.

    Korean J Pediatr. 2012; 55: 470-473

  • 66.
    • Shirato K
    • Imada Y
    • Kawase M
    • Nakagaki K
    • Matsuyama S
    • Taguchi F

    Possible involvement of infection with human coronavirus 229E, but not NL63, in Kawasaki disease.

    J Med Virol. 2014; 86: 2146-2153

  • 67.
    • Kim GB
    • Park S
    • Kwon BS
    • Han JW
    • Park YW
    • Hong YM

    Evaluation of the temporal association between Kawasaki disease and viral infections in South Korea.

    Korean Circ J. 2014; 44: 250-254

  • 68.
    • Belot A
    • Antona D
    • Renolleau S
    • et al.

    SARS-CoV-2-related paediatric inflammatory multisystem syndrome, an epidemiological study, France, 1 March to 17 May 2020.

    Euro Surveill. 2020; 252001010

  • 69.
    • Woo PC
    • Huang Y
    • Lau SK
    • Yuen K-Y

    Coronavirus genomics and bioinformatics analysis.

    Viruses. 2010; 2: 1804-1820

  • 70.
    • Hamming I
    • Timens W
    • Bulthuis M
    • Lely A
    • Navis GJ
    • van Goor H

    Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis.

    J Pathol. 2004; 203: 631-637

  • 71.
    • de Wit E
    • van Doremalen N
    • Falzarano D
    • Munster VJ

    SARS and MERS: recent insights into emerging coronaviruses.

    Nat Rev Microbiol. 2016; 14: 523-534

  • 72.
    • Prompetchara E
    • Ketloy C
    • Palaga T

    Immune responses in COVID-19 and potential vaccines: lessons learned from SARS and MERS epidemic.

    Asian Pac J Allergy Immunol. 2020; 39: 10

  • 73.

    Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding.

    Lancet. 2020; 395: 565-574

  • 74.
    • Huang C
    • Wang Y
    • Li X
    • et al.

    Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.

    Lancet. 2020; 395: 497-506

  • 75.

    COVID-19—considerations for the paediatric rheumatologist.

    Clin Immunol. 2020; 214108420

  • 76.
    • McGonagle D
    • Sharif K
    • O’Regan A
    • Bridgewood C

    The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease.

    Autoimmun Rev. 2020; 19102537

  • 77.
    • Atkin-Smith GK
    • Duan M
    • Chen W
    • Poon IKH

    The induction and consequences of influenza A virus-induced cell death.

    Cell Death Dis. 2018; 91002

  • 78.
    • Zhang W
    • Zhao Y
    • Zhang F
    • et al.

    The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): the perspectives of clinical immunologists from China.

    Clin Immunol. 2020; 214108393

  • 79.
    • Li H
    • Liu L
    • Zhang D
    • et al.

    SARS-CoV-2 and viral sepsis: observations and hypotheses.

    Lancet. 2020; 395: 1517-1520

  • 80.

    Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients.

    EBioMedicine. 2020; 55102763

  • 81.
    • Sardu C
    • Gambardella J
    • Morelli MB
    • Wang X
    • Marfella R
    • Santulli G

    Hypertension, thrombosis, kidney failure, and diabetes: is COVID-19 an endothelial disease? A comprehensive evaluation of clinical and basic evidence.

    J Clin Med. 2020; 91417

  • 82.
    • Varga Z
    • Flammer AJ
    • Steiger P
    • et al.

    Endothelial cell infection and endotheliitis in COVID-19.

    Lancet. 2020; 395: 1417-1418

  • 83.
    • Fuchs TA
    • Abed U
    • Goosmann C
    • et al.

    Novel cell death program leads to neutrophil extracellular traps.

    J Cell Biol. 2007; 176: 231-241

  • 84.

    The role of neutrophil extracellular traps in Covid-19: only an hypothesis or a potential new field of research?.

    Thromb Res. 2020; 191: 26-27

  • 85.
    • Zuo Y
    • Yalavarthi S
    • Shi H
    • et al.

    Neutrophil extracellular traps in COVID-19.

    JCI Insight. 2020; 5138999

  • 86.
    • Brill A
    • Fuchs TA
    • Savchenko AS
    • et al.

    Neutrophil extracellular traps promote deep vein thrombosis in mice.

    J Thromb Haemost. 2012; 10: 136-144

  • 87.
    • Borissoff JI
    • Joosen IA
    • Versteylen MO
    • et al.

    Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state.

    Arterioscler Thromb Vasc Biol. 2013; 33: 2032-2040

  • 88.

    Thrombosis: tangled up in NETs.

    Blood. 2014; 123: 2768-2776

  • 89.

    Coronavirus (COVID-19) statistics and analysis.

  • 90.
    • Selva KJ
    • van de Sandt CE
    • Lemke MM
    • et al.

    Distinct systems serology features in children, elderly and COVID patients.

    medRxiv. 2020; ()

  • 91.
    • Gruber C
    • Patel R
    • Trachman R
    • et al.

    Mapping systemic inflammation and antibody responses in multisystem inflammatory syndrome in children (MIS-C).

    medRxiv. 2020; ()

  • 92.
    • Katzelnick LC
    • Gresh L
    • Halloran ME
    • et al.

    Antibody-dependent enhancement of severe dengue disease in humans.

    Science. 2017; 358: 929-932

  • 93.
    • Endy TP
    • Nisalak A
    • Chunsuttitwat S
    • et al.

    Relationship of preexisting dengue virus (DV) neutralizing antibody levels to viremia and severity of disease in a prospective cohort study of DV infection in Thailand.

    J Infect Dis. 2004; 189: 990-1000

  • 94.
    • Waggoner JJ
    • Katzelnick LC
    • Burger-Calderon R
    • et al.

    Antibody-dependent enhancement of severe disease is mediated by serum viral load in pediatric dengue virus infections.

    J Infect Dis. 2020; 221: 1846-1854

  • 95.
    • Wang S-F
    • Tseng S-P
    • Yen C-H
    • et al.

    Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins.

    Biochem Biophys Res Commun. 2014; 451: 208-214

  • 96.
    • Hoepel W
    • Chen HJ
    • Allahverdiyeva S
    • et al.

    Anti-SARS-CoV-2 IgG from severely ill COVID-19 patients promotes macrophage hyper-inflammatory responses.

    bioRxiv. 2020; ()

  • 97.
    • Menikou S
    • Langford PR
    • Levin M

    Kawasaki disease: the role of immune complexes revisited.

    Front Immunol. 2019; 101156

  • 98.
    • Mason WH
    • Jordan SC
    • Sakai R
    • Takahashi M
    • Bernstein B

    Circulating immune complexes in Kawasaki syndrome.

    Pediatr Infect Dis. 1985; 4: 48-51

  • 99.
    • Ono S
    • Onimaru T
    • Kawakami K
    • Hokonohara M
    • Miyata K

    Impaired granulocyte chemotaxis and increased circulating immune complexes in Kawasaki disease.

    J Pediatr. 1985; 106: 567-570

  • 100.
    • Levin M
    • Holland PC
    • Nokes TJ
    • et al.

    Platelet immune complex interaction in pathogenesis of Kawasaki disease and childhood polyarteritis.

    Br Med J (Clin Res Ed). 1985; 290: 1456-1460

  • 101.
    • Khor CC
    • Davila S
    • Breunis WB
    • et al.

    Genome-wide association study identifies FCGR2A as a susceptibility locus for Kawasaki disease.

    Nat Genet. 2011; 43: 1241-1246

  • 102.
    • Lee Y-C
    • Kuo H-C
    • Chang J-S
    • et al.

    Two new susceptibility loci for Kawasaki disease identified through genome-wide association analysis.

    Nat Genet. 2012; 44: 522-525

  • 103.
    • Onouchi Y
    • Onoue S
    • Tamari M
    • et al.

    CD40 ligand gene and Kawasaki disease.

    Eur J Hum Genet. 2004; 12: 1062-1068

  • 104.
    • Onouchi Y
    • Gunji T
    • Burns JC
    • et al.

    ITPKC functional polymorphism associated with Kawasaki disease susceptibility and formation of coronary artery aneurysms.

    Nat Genet. 2008; 40: 35-42

  • 105.
    • Tremoulet AH
    • Pancoast P
    • Franco A
    • et al.

    Calcineurin inhibitor treatment of intravenous immunoglobulin-resistant Kawasaki disease.

    J Pediatr. 2012; 161 (): 506

  • 106.
    • Cheng MH
    • Zhang S
    • Porritt RA
    • Arditi M
    • Bahar I

    An insertion unique to SARS-CoV-2 exhibits superantigenic character strengthened by recent mutations.

    bioRxiv. 2020; ()

  • 107.
    • Deza Leon MP
    • Redzepi A
    • McGrath E
    • et al.

    COVID-19-associated pediatric multisystem inflammatory syndrome.

    J Pediatric Infect Dis Soc. 2020; 9: 407-408

  • 108.
    • Hennon TR
    • Penque MD
    • Abdul-Aziz R
    • et al.

    COVID-19 associated multisystem inflammatory syndrome in children (MIS-C) guidelines; a Western New York approach.

    Prog Pediatr Cardiol. 2020; ()

  • 109.

    Best available treatment study for inflammatory conditions associated with COVID-19.

  • 110.
    • Beigel JH
    • Tomashek KM
    • Dodd LE
    • et al.

    Remdesivir for the treatment of COVID-19—preliminary report.

    N Engl J Med. 2020; ()

  • 111.
    • Horby P
    • Lim WS
    • Emberson J
    • et al.

    Dexamethasone in hospitalized patients with COVID-19—preliminary report.

    N Engl J Med. 2020; ()

  • 112.
    • Levin M
    • Cunnington AJ
    • Wilson C
    • et al.

    Effects of saline or albumin fluid bolus in resuscitation: evidence from re-analysis of the FEAST trial.

    Lancet Respir Med. 2019; 7: 581-593

  • 113.
    • Alhazzani W
    • Møller MH
    • Arabi YM
    • et al.

    Surviving sepsis campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19).

    Crit Care Med. 2020; 48: e440-e469

  • 114.
    • Edwards S
    • Small JD
    • Geratz JD
    • Alexander LK
    • Baric RS

    An experimental model for myocarditis and congestive heart failure after rabbit coronavirus infection.

    J Infect Dis. 1992; 165: 134-140

  • 115.
    • Mahmud E
    • Dauerman HL
    • Welt FGP
    • et al.

    Management of acute myocardial infarction during the COVID-19 pandemic.

    J Am Coll Cardiol. 2020; ()

  • 116.
    • Caforio ALP
    • Pankuweit S
    • Arbustini E
    • et al.

    Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases.

    Eur Heart J. 2013; 34: 2636-2648

  • 117.
    • Veronese G
    • Ammirati E
    • Cipriani M
    • Frigerio M

    Fulminant myocarditis: characteristics, treatment, and outcomes.

    Anatol J Cardiol. 2018; 19: 279-286

  • 118.
    • Imazio M
    • Klingel K
    • Kindermann I
    • et al.

    COVID-19 pandemic and troponin: indirect myocardial injury, myocardial inflammation or myocarditis?.

    Heart. 2020; 106: 1127-1131

  • 119.
    • Godfred-Cato S
    • Bryant B
    • Leung J
    • et al.

    COVID-19–associated multisystem inflammatory syndrome in children — United States, March–July 2020.

    MMWR Morb Mortal Wkly Rep. 2020; ()


  • Source link